sensor_plot_vertical_map

Navigation: sensor_plot > vertical__map

vertical_map … end_vertical_map
vertical_map

  Stub Definition Commands

  # Sensor Control

  mode_name ...

  # Jammer Control

  jammer_to_signal_reference ...
  jamming_platform_name ...

  target_platform_type
  target_speed | target_mach
  target_heading
  target_yaw
  target_pitch
  target_roll

  # Target Region

  ground_range_limits ...
  ground_range_step ...
  altitude_limits ...
  altitude_step ...

  # Output Selection

  variable ...
  script_variable ...
  detection_reference ...

  pd_map_file ...
  header_line_1 ...
  header_line_2 ...
  header_line_3 ...
  output_column_limit ...

  gnuplot_file ...
  gnuplot_player_file ...

end_vertical_map

Overview

The vertical_map command is used to generate a plot file of target detectability at the intersection points of a vertical rectangular mesh. Two types of plot files can be produced:

  • A ‘pd map’ file for the program ‘plotview’ to show a typical ground range/altitude plot.

  • A file suitable for plotting with the program ‘gnuplot’.

To create a file, the following process should be followed:

Sensor Control

mode_name <mode_name>

Specifies the name of the mode to be used if the sensor is a multi-mode sensor.

Default The default mode of the sensor. This will be the value of the initial_mode command of the sensor (if defined) or the first mode (if initial_mode was not defined).

Jammer Control

jammer_to_signal_reference <db-ratio-value>

Specifies the jammer-to-signal (J/S) reference to be used when plotting the ‘required_jamming_power’ variable.

Default 0.0 db

jamming_platform_name <platform-name>

Specifies the platform that will be used to calculate the required jamming power. This input is to be used when plotting the ‘required_jamming_power’ variable for the location of the jammer system.

Default TARGET_PLATFORM_TYPE

target_platform_type <target-platform-type>

Specify the platform type to be used to represent the target.

Default TARGET_PLATFORM_TYPE

target_speed <speed-value>
target_mach <real-value>

Specify the speed at which the target is to be considered moving. This is only used if the sensor needs to performs Doppler processing. The speed may be specified using either an absolute speed (target_speed) or a Mach number (target_mach). If both are specified the last value takes precedence.

Default target_speed 250 m/s

target_heading <angle-value>

Specifies the heading at which the target will be placed.

Default If not specified, the target will be oriented at each grid point to point at the sensor.

target_yaw <angle-value>

Specify the yaw angle with respect to the target heading at which the target will be placed. This is primarily used for certain types of infrared sensor plots where it desired to hold the sensor-to-target viewing angle a constant. In those cases the target_heading will be omitted and the value of this command will be set to the desired sensor-to-target viewing angle.

Default 0.0 deg

target_pitch <angle-value>

Specify the pitch angle at which the target will be placed.

Default 0 degrees

target_roll <angle-value>

Specify the roll angle at which the target will be placed.

Default 0 degrees

Target Region

ground_range_limits <min-length-value> <max-length-value>

Specifies the ground range limits of the sample mesh.

Default none. This must be provided.

ground_range_step <step-length-value>

Specifies the increment between sample points in the ground range direction.

Default 1.0 nm

altitude_limits <min-length-value> max-length-value>

Specifies the altitude limits of the sample mesh.

Default none. This must be provided.

altitude_step <step-length-value>

Specifies the increment between sample points in the altitude direction.

Default 0.25 nm

Output Selection

variable <variable-name>

<variable-name>

Description

Notes

pd

The probability of detection.

If multiple sensors are provided, the result will be the maximum probability of detection by any sensor.

detection_threshold

The detection threshold in dB.

If multiple sensors are provided, the result will be the minimum detection threshold by any sensor. For WSF_ESM_SENSOR types the detection threshold is only valid when a successful interaction happens between the transmitter and receiver.

required_rcs**or **rcs_required

The radar cross section required for the sensor to detect the target in dBsm.

If multiple sensors are provided the result will be the minimum value determined for any sensor. Selecting this may also require the specification of detection_reference

required_jamming_power or jamming_power_required or required_jammer_power or jammer_power_required

The jamming power required to overcome the target signal by in dBsm.

If multiple sensors are provided the result will be the maximum value determined for any sensor. Selecting this may also require the specification of jammer_to_signal_reference.

radar_signature

The radar signature of the target presented to the sensor in dBsm.

If multiple sensors are provided, the result will be the maximum value presented to any sensor.

optical_signature

The optical signature of the target presented to the sensor in dB.

If multiple sensors are provided, the result will be the maximum value presented to any sensor.

infrared_signature

The infrared signal of the target presented to the sensor in w/sr.

If multiple sensors are provided, the result will be the maximum value presented to any sensor.

signal_power

The received signal power in dBW.

If multiple sensors are provided, the result will be the maximum value seen to any sensor.

clutter_power

The received clutter power in dBW.

If multiple sensors are provided, the result will be the maximum value seen to any sensor.

noise_power

The receiver noise power in dBW.

If multiple sensors are provided, the result will be the maximum value seen to any sensor.

jammer_power

The received jammer power, to include noise and pulsed-noise, in dBW.

If multiple sensors are provided, the result will be the maximum value seen to any sensor.

noise_jammer_power

The received noise only jammer power in dBW.

If multiple sensors are provided, the result will be the maximum value seen to any sensor.

pulse_jammer_power

The received non-coherent pulse (pulsed noise) jammer power in dBW.

If multiple sensors are provided, the result will be the maximum value seen to any sensor.

coherent_jammer_power

The received coherent (coherent pulse and false-target) jammer power in dBW.

If multiple sensors are provided, the result will be the maximum value seen to any sensor.

jammer_to_mds

The jammer (noise and pulsed noise) to minimum detectable signal (detection_threshold + noise_power) in dB.

If multiple sensors are provided, the result will be the maximum value seen to any sensor.

jammer_to_signal

The jammer (noise and pulsed noise) to signal ratio in dB.

If multiple sensors are provided, the result will be the maximum value seen to any sensor.

noise_jammer_to_signal

The jammer (noise power only) to signal ratio in dB.

If multiple sensors are provided, the result will be the maximum value seen to any sensor.

pulse_jammer_to_signal

The jammer (pulsed noise power only) to signal ratio in dB.

If multiple sensors are provided, the result will be the maximum value seen to any sensor.

coherent_jammer_to_signal

The jammer (coherent jammer power only) to signal ratio in dB.

If multiple sensors are provided, the result will be the maximum value seen to any sensor.

coherent_jammer_to_noise

The jammer (coherent jammer power only) to receiver noise power in dB.

If multiple sensors are provided, the result will be the maximum value seen to any sensor.

signal_to_noise

The signal to noise ratio in dB. Only the receiver thermal noise is accounted for.

If multiple sensors are provided, the result will be the maximum value seen to any sensor.

signal_to_interference

The signal to interference ratio in dB.

Includes the interference power due to receiver thermal noise, clutter, and jamming (if present). If multiple sensors are provided, the result will be the maximum value seen to any sensor.

signal_at_target

The signal power density present at the target in dBW/m^2.

If multiple sensors are provided, the result will be the maximum value seen to any sensor.

background_radiant_intensity

The background radiant intensity as seen by the sensor.

If multiple sensors are provided, the result will be the maximum value seen to any sensor.

contrast_radiant_intensity

The contrast radiant intensity as seen by the sensor.

If multiple sensors are provided, the result will be the maximum value seen to any sensor.

attenuation_factor

The atmospheric attenuation factor of the signal as seen by the sensor in dB.

If multiple sensors are provided, the result will be the maximum value seen to any sensor.

propagation_factor

The propagation factor of the signal as seen by the sensor in dB.

If multiple sensors are provided, the result will be the maximum value seen to any sensor.

transmit_antenna_gain

The transmit antenna gain in dB.

If multiple sensors are provided, the result will be the maximum value for any sensor.

receive_antenna_gain

The receive antenna gain in dB.

If multiple sensors are provided, the result will be the maximum value for any sensor.

transmit_gain_propagation_factor

The transmit antenna gain multiplied by the one-way propagation factor, in dB.

If multiple sensors are provided, the result will be the maximum value for any sensor.

This variable is only valid for monostatic radars.

receive_gain_propagation_factor

The receive antenna gain multiplied by the one-way propagation factor, in dB.

If multiple sensors are provided, the result will be the maximum value for any sensor.

This variable is only valid for monostatic radars.

slant_range

The slant range from the sensor to the target in meters.

If multiple sensors are provided, the result will be maximum the value seen to any sensor.

ground_range

The ground range from the sensor to the target in meters.

If multiple sensors are provided, the result will be the value seen by the last sensor processed, since this variable is only applicable to single-sensor plots.

azimuth_angle

The azimuth angle from the sensor to the target in degrees.

If multiple sensors are provided, the result will be the value seen by the last sensor processed, since this variable is only applicable to single-sensor plots.

elevation_angle

The elevation angle from the sensor to the target in degrees.

If multiple sensors are provided, the result will be the value seen by the last sensor processed, since this variable is only applicable to single-sensor plots.

angle

The angle between the sensor boresight and the beam center.

This is typically used to deterimine the beam steering angle for electronically scanned sensor. If multiple sensors are provided, the result will be the value seen by the last sensor processed, since this variable is only applicable to single-sensor plots.

grazing_angle

The angle between the sensor antenna location (NOT boresight) to the target in degrees.

If multiple sensors are provided, the result will be the value seen by the last sensor processed, since this variable is only applicable to single-sensor plots.

target_to_sensor_slant_range

The slant range from the target to the sensor in meters.

If multiple sensors are provided, the result will be maximum the value seen to any sensor.

target_to_sensor_ground_range

The ground range from the target to the sensor in meters.

If multiple sensors are provided, the result will be the value seen by the last sensor processed, since this variable is only applicable to single-sensor plots.

target_to_sensor_azimuth_angle

The azimuth angle from the target to the sensor in degrees.

If multiple sensors are provided, the result will be the value seen by the last sensor processed, since this variable is only applicable to single-sensor plots.

target_to_sensor_elevation_angle

The elevation angle from the target to the sensor in degrees.

If multiple sensors are provided, the result will be the value seen by the last sensor processed, since this variable is only applicable to single-sensor plots.

sensor_latitude

The latitude of the sensor platform in decimal degrees.

sensor_longitude

The longitude of the sensor platform in decimal degrees.

sensor_altitude

The altitude of the sensor platform in meters.

sensor_speed

The speed of the sensor platform in meters/second.

sensor_heading

The heading of the sensor platform measured clockwise from north.

sensor_pitch

The pitch angle of the sensor platform in degrees.

sensor_roll

The roll angle of the sensor platform in degrees.

target_latitude

The latitude of the target in platform decimal degrees.

target_longitude

The longitude of the target in platform decimal degrees.

target_altitude

The altitude of the target platform in meters.

target_speed

The speed of the target platform in meters/second.

target_heading

The heading of the target platform measured clockwise from north.

target_pitch

The pitch angle of the platform target in degrees.

target_roll

The roll angle of the platform target in degrees.

sar_dwell_time

The dwell time (in seconds) needed to produce an image of the desired resolution specified in the sensor definition.

The sensor being tested must be of type WSF_SAR_SENSOR.

sar_resolution

The resolution (in meters) of an image that can be produced with the dwell time specified in the sensor definition.

The sensor being tested must be of type WSF_SAR_SENSOR.

sar_clutter_to_noise

The SAR clutter-to-noise ratio (in dB).

The sensor being tested must be of type WSF_SAR_SENSOR.

sar_doppler_foldover

The difference between the PRF and the minimum PRF that could be used without causing ‘doppler foldover’.

The sensor being tested must be of type WSF_SAR_SENSOR.

pixel_count

The number of pixels the target occupies in the image.

Available for WSF_EOIR_SENSOR and WSF_SAR_SENSOR.

masking_status

The masking status at the point.

The value will be 0 if the target is not masked, 1 if masked by the horizon and 2 if masked by the terrain.

terrain_elevation

The terrain elevation in meters.

Use with horizontal_map.

script_variable <variable/script-name>

Specify the name of the ‘global’ script variable to use to derive and manipulate a variable from the sensor detection attempt interaction result.

Note

The script must have a ‘double’ as the return type and have inputs in the format and order of ‘WsfPlatform , WsfSensor , WsfPlatform , WsfSensorInteraction’.

Note

The script must be defined globally, i.e. outside any platforms or the sensor_plot mapping blocks.

Note

If multiple sensors are provided, the result will be the maximum value presented to any sensor.

Example script that writes out the Jammer/MDS, need to include script_variable jammer_to_mds also to run the script:

script double jammer_to_mds(WsfPlatform aPlatform, WsfSensor aSensor, WsfPlatform aTarget, WsfSensorInteraction aResult)
   if ((aResult.DetectionThreshold() > -300.0) &&
       (aResult.RcvrNoise() > -300.0) &&
       (aResult.NoiseJammerPower() > -300.0) &&
       (aResult.NoiseJammerPower() != 0.0))
   {
      double MDS =  aResult.DetectionThreshold() + aResult.RcvrNoise();
      return aResult.NoiseJammerPower() - MDS;
   }
   return -300.0;  // default value in dB
end_script
detection_reference <db-ratio-value>

The reference signal-to-noise ratio used to determine the required_rcs or rcs_required variable.

Default 12.8 dB

pd_map_file <file-name>

Specifies the name of the file to which ‘pd map’ output will be written. The name does not imply that only pd can be written but rather denotes a common file format.

Default ‘pd map’ output will not be produced.

header_line_1 <text>
header_line_2 <text>
header_line_3 <text>

Specifies the text to be contained in the first three lines of the output file when pd_map_file is specified.

Default all header lines are blank.

output_column_limit <integer>

Specifies the maximum number of columns per physical line in the output file when pd_map_file is specified.

Default 100

Note

If the file is to be imported into a spreadsheet such as Microsoft Excel, this value should be set so that the rows do not have to be split into multiple physical lines.

gnuplot_file <file-name>

Specifies the name of the file to which ‘gnuplot’ output will be written.

Default ‘gnuplot’ output will not be produced.

gnuplot_player_file <file-name>

Specifies the name of the file to which player’s Down range/Cross range or Latitude/Longitude will be written. Will not output target locations.

Default ‘gnuplot’ player location output will not be produced.